Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1340029, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344173

RESUMO

Antimicrobial peptides (AMPs), commonly referred to as host defense peptides, are found in a wide range of organisms, including bacteria, plants, and both vertebrate and invertebrate animals. They function as an initial defense mechanism against pathogenic microorganisms, modulate immune responses, and in specific instances, confer protection against the onset of cancer. Pleurocidin (Ple) is a linear antimicrobial peptide with amphipathic α-helical conformation, isolated originally from the winter flounder (Pleuronectes americanus), notable for its wide-ranging effectiveness against both bacteria and fungi. While the majority of research on pleurocidin's biological characteristics has primarily focused on deciphering its mechanisms of interaction with the biological membranes of pathogenic bacteria and host cells, as well as investigating its modes of killing activities, there is a growing body of evidence suggesting that pleurocidin and pleurocidin-derived analogs might be effectively employed as anti-cancer agents against breast carcinoma and leukemia due to their potent cytotoxic properties and selectivity towards cancer cells. Notably, some characteristics of pleurocidin observed in microbiological investigations of this compound could be effectively applied in examining the anti-cancer capabilities of Ple-like derivatives. This review provides a comprehensive overview of the literature on the biological activities of pleurocidin, pleurocidin-derived peptides, pleurocidin-containing hybrid peptides, and nanosystems. The primary emphasis is on elucidating the range of activities exhibited by these compounds, evaluating their potential therapeutic applications, assessing their safety profile, and identifying any limits observed thus far. This paper will also discuss potential areas for further investigation into the anti-cancer effects of Ple and its derivatives, drawing insights from microbiological research.

2.
PLoS One ; 19(2): e0298112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38346040

RESUMO

BACKGROUND: Microbial biofilms, as a hallmark of cystic fibrosis (CF) lung disease and other chronic infections, remain a desirable target for antimicrobial therapy. These biopolymer-based viscoelastic structures protect pathogenic organisms from immune responses and antibiotics. Consequently, treatments directed at disrupting biofilms represent a promising strategy for combating biofilm-associated infections. In CF patients, the viscoelasticity of biofilms is determined mainly by their polymicrobial nature and species-specific traits, such as Pseudomonas aeruginosa filamentous (Pf) bacteriophages. Therefore, we examined the impact of microbicidal ceragenins (CSAs) supported by mucolytic agents-DNase I and poly-aspartic acid (pASP), on the viability and viscoelasticity of mono- and bispecies biofilms formed by Pf-positive and Pf-negative P. aeruginosa strains co-cultured with Staphylococcus aureus or Candida albicans. METHODS: The in vitro antimicrobial activity of ceragenins against P. aeruginosa in mono- and dual-species cultures was assessed by determining minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC). Inhibition of P. aeruginosa mono- and dual-species biofilms formation by ceragenins alone and in combination with DNase I or poly-aspartic acid (pASP) was estimated by the crystal violet assay. Additionally, the viability of the biofilms was measured by colony-forming unit (CFU) counting. Finally, the biofilms' viscoelastic properties characterized by shear storage (G') and loss moduli (G"), were analyzed with a rotational rheometer. RESULTS: Our results demonstrated that ceragenin CSA-13 inhibits biofilm formation and increases its fluidity regardless of the Pf-profile and species composition; however, the Pf-positive biofilms are characterized by elevated viscosity and elasticity parameters. CONCLUSION: Due to its microbicidal and viscoelasticity-modifying properties, CSA-13 displays therapeutic potential in biofilm-associated infections, especially when combined with mucolytic agents.


Assuntos
Anti-Infecciosos , Fibrose Cística , Infecções por Pseudomonas , Esteroides , Humanos , Pseudomonas aeruginosa , Ácido Aspártico , Expectorantes , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Biofilmes , Desoxirribonuclease I , Testes de Sensibilidade Microbiana
3.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38399419

RESUMO

Ensuring proper dental hygiene is of paramount importance for individuals' general well-being, particularly for patients receiving medical care. There is a prevailing utilization of conventional oral hygiene items, including toothbrushes and mouthwashes, which have gained widespread acceptance; nevertheless, their limitations encourage investigating novel options in this domain. Our study indicates that ceragenins (CSAs) being lipid analogs of host defense peptides, well-recognized for their wide-ranging antimicrobial properties, may be a potentially efficacious means to augment oral hygiene in hospitalized individuals. We demonstrate that ceragenins CSA-13, CSA-44, and CSA-131 as well as undescribed to date CSA-255 display potent antimicrobial activities against isolates of fungi, aerobic, and anaerobic bacteria from Candida, Streptococcus, Enterococcus, and Bacteroides species, which are well-recognized representatives of microbes found in the oral cavity. These effects were further confirmed against mono- and dual-species fungal and bacterial biofilms. While the ceragenins showed similar or slightly diminished efficacy compared to commercially available mouthwashes, they demonstrated a highly favorable toxicity profile toward host cells, that may translate into better maintenance of host mucosal membrane stability. This suggests that incorporating ceragenins into oral hygiene products could be a valuable strategy for reducing the risk of both oral cavity-localized and secondary systemic infections and for improving the overall health outcomes of individuals receiving medical treatment.

4.
Pathogens ; 12(11)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003809

RESUMO

The growing number of infections caused by multidrug-resistant bacterial strains, limited treatment options, multi-species infections, high toxicity of the antibiotics used, and an increase in treatment costs are major challenges for modern medicine. To remedy this, scientists are looking for new antibiotics and treatment methods that will effectively eradicate bacteria while continually developing different resistance mechanisms. Ceragenins are a new group of antimicrobial agents synthesized based on molecular patterns that define the mechanism of antibacterial action of natural antibacterial peptides and steroid-polyamine conjugates such as squalamine. Since ceragenins have a broad spectrum of antimicrobial activity, with little recorded ability of bacteria to develop a resistance mechanism that can bridge their mechanism of action, there are high hopes that this group of molecules can give rise to a new family of drugs effective against bacteria resistant to currently used antibiotics. Experimental data suggests that core-shell nanosystems, in which ceragenins are presented to bacterial cells on metallic nanoparticles, may increase their antimicrobial potential and reduce their toxicity. However, studies should be conducted, among others, to assess potential long-term cytotoxicity and in vivo studies to confirm their activity and stability in animal models. Here, we summarized the current knowledge on ceragenins and ceragenin-containing nanoantibiotics as potential new tools against emerging Gram-negative rods associated with nosocomial infections.

5.
Sci Rep ; 12(1): 19164, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357517

RESUMO

Ceragenins (CSAs) are synthetic, lipid-based molecules that display activities of natural antimicrobial peptides. Previous studies demonstrated their high in vitro activity against pathogens causing urinary tract infections (UTIs), but their efficiency in vivo was not explored to date. In this study, we aimed to investigate the bactericidal efficiency of ceragenins against E. coli (Xen14 and clinical UPEC strains) isolates both in vitro and in vivo, as well to explore CSA-13 biodistribution and ability to modulate nanomechanical alterations of infected tissues using animal model of UTI. CSA-44, CSA-131 and particularly CSA-13 displayed potent bactericidal effect against tested E. coli strains, and this effect was mediated by induction of oxidative stress. Biodistribution studies indicated that CSA-13 accumulates in kidneys and liver and is eliminated with urine and bile acid. We also observed that ceragenin CSA-13 reverses infection-induced alterations in mechanical properties of mouse bladders tissue, which confirms the preventive role of CSA-13 against bacteria-induced tissue damage and potentially promote the restoration of microenvironment with biophysical features unfavorable for bacterial growth and spreading. These data justify the further work on employment of CSA-13 in the treatment of urinary tract infections.


Assuntos
Escherichia coli , Infecções Urinárias , Camundongos , Animais , Distribuição Tecidual , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Infecções Urinárias/tratamento farmacológico
6.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166513, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35932892

RESUMO

BACKGROUND: The mechanical state of the extracellular environment of the brain cells considerably affects their phenotype during the development of central nervous system (CNS) pathologies, and when the cells respond to drugs. The reports on the evaluation of the viscoelastic properties of different brain tumors have shown that both tissue stiffness and viscosity can be altered during cancer development. Although a compelling number of reports established the role of substrate stiffness on the proliferation, motility, and drug sensitivity of brain cancer cells, there is a lack of parallel data in terms of alterations in substrate viscosity. METHODS: Based on viscoelasticity measurements of rat brain samples using strain rheometry, polyacrylamide (PAA) hydrogels mimicking elastic and viscous parameters of the tissues were prepared. Optical microscopy and flow cytometry were employed to assess the differences in glioblastoma cells morphology, proliferation, and cytotoxicity of anticancer drug temozolomide (TMZ) due to increased substrate viscosity. RESULTS: Our results indicate that changes in substrate viscosity affect the proliferation of untreated glioma cells to a lesser extent, but have a significant impact on the apoptosis-associated depolarization of mitochondria and level of DNA fragmentation. This suggests that viscosity sensing and stiffness sensing machinery can activate different signaling pathways in glioma cells. CONCLUSION: Collected data indicate that viscosity should be considered an important parameter in in vitro polymer-based cell culture systems used for drug screening.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Glioma , Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Proliferação de Células , Glioblastoma/metabolismo , Glioma/patologia , Humanos , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Polímeros , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Viscosidade
7.
Brain Sci ; 12(7)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35884733

RESUMO

The evaluation of nanomechanical properties of tissues in health and disease is of increasing interest to scientists. It has been confirmed that these properties, determined in part by the composition of the extracellular matrix, significantly affect tissue physiology and the biological behavior of cells, mainly in terms of their adhesion, mobility, or ability to mutate. Importantly, pathophysiological changes that determine disease development within the tissue usually result in significant changes in tissue mechanics that might potentially affect the drug efficacy, which is important from the perspective of development of new therapeutics, since most of the currently used in vitro experimental models for drug testing do not account for these properties. Here, we provide a summary of the current understanding of how the mechanical properties of brain tissue change in pathological conditions, and how the activity of the therapeutic agents is linked to this mechanical state.

8.
Int J Mol Sci ; 23(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35806446

RESUMO

It has been proven that tumour growth and progression are regulated by a variety of mediators released during the inflammatory process preceding the tumour appearance, but the role of inflammation in the development of bladder cancer is ambiguous. This study was designed around the hypothesis that sphingosine-1-phosphate (S1P), as a regulator of several cellular processes important in both inflammation and cancer development, may exert some of the pro-tumorigenic effects indirectly due to its ability to regulate the expression of human cathelicidin (hCAP-18). LL-37 peptide released from hCAP-18 is involved in the development of various types of cancer in humans, especially those associated with infections. Using immunohistological staining, we showed high expression of hCAP-18/LL-37 and sphingosine kinase 1 (the enzyme that forms S1P from sphingosine) in human bladder cancer cells. In a cell culture model, S1P was able to stimulate the expression and release of hCAP-18/LL-37 from human bladder cells, and the addition of LL-37 peptide dose-dependently increased their proliferation. Additionally, the effect of S1P on LL-37 release was inhibited in the presence of FTY720P, a synthetic immunosuppressant that blocks S1P receptors. Together, this study presents the possibility of paracrine relation in which LL-37 production following cell stimulation by S1P promotes the development and growth of bladder cancer.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Lisofosfolipídeos , Esfingosina , Neoplasias da Bexiga Urinária , Peptídeos Catiônicos Antimicrobianos/metabolismo , Processos de Crescimento Celular/fisiologia , Humanos , Inflamação/metabolismo , Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Catelicidinas
9.
Infect Drug Resist ; 15: 851-871, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281576

RESUMO

Background: Extracellular polymeric substances (EPS) produced by bacteria, as they form a biofilm, determine the stability and viscoelastic properties of biofilms and prevent antibiotics from penetrating this multicellular structure. To date, studies demonstrated that an appropriate optimization of the chemistry and morphology of nanotherapeutics might provide a favorable approach to control their interaction with EPS and/or diffusion within the biofilm matrix. Targeting the biofilms' EPS, which in certain conditions can adopt liquid crystal structure, was demonstrated to improve the anti-biofilm activity of antibiotics and nanoparticles. A similar effect is achievable by interfering EPS' production by mucoactive agents, such as N-acetyl-cysteine (NAC). In our previous study, we demonstrated the nanogram efficiency of non-spherical gold nanoparticles, which due to their physicochemical features, particularly morphology, were noted to be superior in antimicrobial activity compared to their spherical-shaped counterparts. Methods: To explore the importance of EPS matrix modulation in achieving a suitable efficiency of peanut-shaped gold nanoparticles (AuP NPs) against biofilms produced by Pseudomonas aeruginosa strains isolated from cystic fibrosis patients, fluorescence microscopy, as well as resazurin staining were employed. Rheological parameters of AuP NPs-treated biofilms were investigated by rotational and creep-recovery tests using a rheometer in a plate-plate arrangement. Results: We demonstrated that tested nanoparticles significantly inhibit the growth of mono- and mixed-species biofilms, particularly when combined with NAC. Notably, gold nanopeanuts were shown to decrease the viscosity and increase the creep compliance of Pseudomonas biofilm, similarly to EPS-targeting NAC. Synergistic activity of AuP NPs with tobramycin was also observed, and the AuP NPs were able to eradicate bacteria within biofilms formed by tobramycin-resistant isolates. Conclusion: We propose that peanut-shaped gold nanoparticles should be considered as a potent therapeutic agent against Pseudomonas biofilms.

10.
Dig Dis Sci ; 67(2): 536-545, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33620599

RESUMO

BACKGROUND: Acute pancreatitis (AP) is a frequent hospitalization cause of patients suffering from gastrointestinal disorders. Gelsolin has an ability to bind bioactive lipids including different sphingolipids engaged in inflammatory response. Importantly, hypogelsolinemia was observed in patients with different states of acute and chronic inflammation. AIMS: The aim of the present study was to assess the interplay of blood plasma gelsolin and blood plasma sphingosine-1-phosphate (S1P) concentration in patients diagnosed with acute pancreatitis. MATERIALS AND METHODS: To assess the concentration of gelsolin and S1P, immunoblotting and HPLC technique were employed, respectively. Additionally, the concentrations of amylase, lipase, C-reactive protein (CRP), procalcitonin (PCT) and the number of white blood cells (WBC) and platelet (PLT) were recorded. RESULTS: We found that both pGSN and S1P concentrations in the plasma of the AP patients were significantly lower (pGSN ~ 15-165 mg/L; S1P ~ 100-360 pmol/mL) when compared to the levels of pGSN and S1P in a control group (pGSN ~ 130-240 mg/L; S1P ~ 260-400 pmol/mL). Additionally, higher concentrations of CRP, WBC, amylase and lipase were associated with low level of gelsolin in the blood of AP patients. No correlations between the level of PCT and PLT with gelsolin concentration were noticed. CONCLUSION: Plasma gelsolin and S1P levels decrease during severe acute pancreatitis. Simultaneous assessment of pGSN and S1P can be useful in development of more accurate diagnostic strategies for patients with severe acute pancreatitis.


Assuntos
Gelsolina/sangue , Lisofosfolipídeos/sangue , Pancreatite/sangue , Esfingosina/análogos & derivados , Adulto , Idoso , Amilases/sangue , Proteína C-Reativa/metabolismo , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Contagem de Leucócitos , Lipase/sangue , Masculino , Pessoa de Meia-Idade , Contagem de Plaquetas , Pró-Calcitonina/sangue , Índice de Gravidade de Doença , Esfingosina/sangue , Adulto Jovem
11.
Pathogens ; 10(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34959500

RESUMO

Irritable bowel syndrome (IBS) is a common, chronic, functional disorder with a large impact on world population. Its pathophysiology is not completely revealed; however, it is certain that dysregulation of the bidirectional communications between the central nervous system (CNS) and the gut leads to motility disturbances, visceral hypersensitivity, and altered CNS processing characterized by differences in brain structure, connectivity and functional responsiveness. Emerging evidence suggests that gut microbiota exerts a marked influence on the host during health and disease. Gut microbiome disturbances can be also important for development of IBS symptoms and its modulation efficiently contributes to the therapy. In this work, we review the current knowledge about the IBS therapy, the role of gut microbiota in pathogenesis of IBS, and we discuss that its targeting may have significant impact on the effectiveness of IBS therapy.

12.
Nanomedicine (Lond) ; 16(30): 2657-2678, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34823374

RESUMO

Aim: To evaluate the antibacterial and antibiofilm activity of ceragenin-conjugated nonspherical gold nanoparticles against the most common agents of otitis media. Methods: Minimal inhibitory and bactericidal concentrations and colony-counting assays, as well as colorimetric and fluorimetric methods, were used to estimate the antibacterial activity of compounds in phosphate-buffered saline and human cerumen. The nanosystems' biocompatibility and ability to decrease IL-8 release was tested using keratinocyte cells. Results: The tested compounds demonstrated strong antimicrobial activity against planktonic and biofilm cultures at nontoxic doses due to the induction of oxidative stress followed by the damage of bacterial membranes. Conclusion: This study indicates that ceragenin-conjugated nonspherical gold nanoparticles have potential as new treatment methods for eradicating biofilm-forming pathogens associated with otitis media.


Lay abstract Middle-ear infections can be painful and cause hearing difficulties. If untreated, they can lead to hearing loss. These infections are usually treated with antibiotic drugs. However, the microbes causing the infection can gain drug resistance. This article reports research into a new way of delivering antibiotics to kill the microbes and the communities they form (biofilms). The authors developed tiny gold particles loaded with the antimicrobial drug ceragenin and tested the drug-loaded particles on three common middle-ear infection-causing bacteria. Compared with ceragenin alone, the ceragenin-loaded particles were better at killing the bacteria and their biofilm communities.


Assuntos
Nanopartículas Metálicas , Otite Média , Antibacterianos/farmacologia , Bactérias , Biofilmes , Ouro , Humanos , Testes de Sensibilidade Microbiana , Otite Média/tratamento farmacológico , Esteroides
13.
Pathogens ; 10(11)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34832527

RESUMO

This study aimed to investigate the potential application of ceragenins (CSAs) as new candidacidal agents to prevent biofilm formation on voice prostheses (VPs). The deterioration of the silicone material of VPs is caused by biofilm growth on the device which leads to frequent replacement procedures and sometimes serious complications. A significant proportion of these failures is caused by Candida species. We found that CSAs have significant candidacidal activities in vitro (MIC; MFC; MBIC), and they effectively eradicate species of yeast responsible for VP failure. Additionally, in our in vitro experimental setting, when different Candida species were subjected to CSA-13 and CSA-131 during 25 passages, no tested Candida strain showed the significant development of resistance. Using liquid chromatography-mass spectrometry (LC-MS), we found that VP immersion in an ethanol solution containing CSA-131 results in silicon impregnation with CSA-131 molecules, and in vitro testing revealed that fungal biofilm formation on such VP surfaces was inhibited by embedded ceragenins. Future in vivo studies will validate the use of ceragenin-coated VP for improvement in the life quality and safety of patients after a total laryngectomy.

14.
Int J Mol Sci ; 21(7)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272559

RESUMO

Plasma gelsolin (pGSN) is a highly conserved abundant circulating protein, characterized by diverse immunomodulatory activities including macrophage activation and the ability to neutralize pro-inflammatory molecules produced by the host and pathogen. Using a murine model of Gram-negative sepsis initiated by the peritoneal instillation of Pseudomonas aeruginosa Xen 5, we observed a decrease in the tissue uptake of IRDye®800CW 2-deoxyglucose, an indicator of inflammation, and a decrease in bacterial growth from ascitic fluid in mice treated with intravenous recombinant human plasma gelsolin (pGSN) compared to the control vehicle. Pretreatment of the murine macrophage line RAW264.7 with pGSN, followed by addition of Pseudomonas aeruginosa Xen 5, resulted in a dose-dependent increase in the proportion of macrophages with internalized bacteria. This increased uptake was less pronounced when cells were pretreated with pGSN and then centrifuged to remove unbound pGSN before addition of bacteria to macrophages. These observations suggest that recombinant plasma gelsolin can modulate the inflammatory response while at the same time augmenting host antibacterial activity.


Assuntos
Gelsolina/farmacologia , Inflamação/tratamento farmacológico , Fagocitose/efeitos dos fármacos , Plasma/metabolismo , Proteínas Recombinantes/farmacologia , Animais , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Linhagem Celular , Humanos , Macrófagos/efeitos dos fármacos , Camundongos , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Células RAW 264.7 , Sepse/tratamento farmacológico
15.
J Nanobiotechnology ; 18(1): 3, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31898542

RESUMO

Nanotechnology-based therapeutic approaches have attracted attention of scientists, in particular due to the special features of nanomaterials, such as adequate biocompatibility, ability to improve therapeutic efficiency of incorporated drugs and to limit their adverse effects. Among a variety of reported nanomaterials for biomedical applications, metal and metal oxide-based nanoparticles offer unique physicochemical properties allowing their use in combination with conventional antimicrobials and as magnetic field-controlled drug delivery nanocarriers. An ever-growing number of studies demonstrate that by combining magnetic nanoparticles with membrane-active, natural human cathelicidin-derived LL-37 peptide, and its synthetic mimics such as ceragenins, innovative nanoagents might be developed. Between others, they demonstrate high clinical potential as antimicrobial, anti-cancer, immunomodulatory and regenerative agents. Due to continuous research, knowledge on pleiotropic character of natural antibacterial peptides and their mimics is growing, and it is justifying to stay that the therapeutic potential of nanosystems containing membrane active compounds has not been exhausted yet.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Invenções , Nanopartículas de Magnetita/química , Esteroides/farmacologia , Humanos , Catelicidinas
16.
BMC Infect Dis ; 19(1): 369, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31046689

RESUMO

BACKGROUND: Urinary tract infections (UTIs) are one of the most common bacterial infections. High recurrence rates and the increasing antibiotic resistance among uropathogens constitute a large social and economic problem in current public health. We assumed that combination of treatment that includes the administration ceragenins (CSAs), will reinforce the effect of antimicrobial LL-37 peptide continuously produced by urinary tract epithelial cells. Such treatment might be an innovative approach to enhance innate antibacterial activity against multidrug-resistant E. coli. METHODS: Antibacterial activity measured using killing assays. Biofilm formation was assessed using crystal violet staining. Viability of bacteria and bladder epithelial cells subjected to incubation with tested agents was determined using MTT assays. We investigated the effects of chosen molecules, both alone and in combinations against four clinical strains of E. coli, obtained from patients diagnosed with recurrent UTI. RESULTS: We observed that the LL-37 peptide, whose concentration increases at sites of urinary infection, exerts increased bactericidal effect against E. coli when combined with ceragenins CSA-13 and CSA-131. CONCLUSION: We suggest that the employment of combination of natural peptide LL-37 with synthetic analogs might be a potential solution to treat urinary tract infections caused by drug-resistant bacteria.


Assuntos
Antibacterianos/uso terapêutico , Esteroides/uso terapêutico , Infecções Urinárias/tratamento farmacológico , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Biofilmes/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Humanos , Esteroides/farmacologia , Infecções Urinárias/microbiologia , Catelicidinas
17.
Med Sci Monit ; 25: 1452-1458, 2019 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-30796880

RESUMO

BACKGROUND Gelsolin (GSN) is an actin-binding and PIP2/Ca²âº-regulated protein found in the cytoplasm and blood plasma. Hypogelsolinemia occurs in a wide range of traumatic injuries and inflammatory reactions. We hypothesize that blood GSN levels will be altered in patients diagnosed with acute myeloid leukemia (AML) that develop sepsis, and assessment of GSN concentration will be a useful marker to determine their clinical outcome. To achieve this task, we evaluated the plasma gelsolin concentration in blood samples collected from patients diagnosed with acute myeloid leukemia (AML) at initial stages of sepsis. MATERIAL AND METHODS To assess if AML patients might be at risk of sepsis, a SOFA score was determined. Plasma gelsolin concentration was evaluated using an immunoblotting technique. RESULTS We found that GSN concentration in the blood of the AML group with developing sepsis was significantly lower (32±41 µg/ml; p<0.05) compared to the AML group (65±35 µg/ml) and control group (176±37 µg/ml; p<0.001). Additionally, low gelsolin concentration in the blood of AML patients developing sepsis was associated with a high SOFA score. A decrease of GSN concentration in the blood of AML subjects with developing sepsis suggests that GSN level in blood reflects not only chronic inflammation stage associated with leukemia, but that GSN depletion also manifests the inflammation associated with sepsis development. CONCLUSIONS The results presented here suggest the possible utility of GSN evaluation for diagnostic purposes. Overall, these data support the that reversing plasma GSN deficiency might be a possible new strategy in sepsis treatment.


Assuntos
Gelsolina/análise , Sepse/metabolismo , Adulto , Idoso , Biomarcadores/sangue , Feminino , Gelsolina/sangue , Gelsolina/metabolismo , Humanos , Inflamação/metabolismo , Leucemia Mieloide Aguda/complicações , Masculino , Pessoa de Meia-Idade , Sepse/diagnóstico
18.
J Nanobiotechnology ; 17(1): 22, 2019 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-30711007

RESUMO

BACKGROUND: Human plasma gelsolin (pGSN) is a multifunctional actin-binding protein involved in a variety of biological processes, including neutralization of pro-inflammatory molecules such as lipopolysaccharide (LPS) and lipoteichoic acid (LTA) and modulation of host inflammatory response. It was found that PBP10, a synthetic rhodamine B-conjugated peptide, based on the phosphoinositide-binding site of pGSN, exerts bactericidal activity against Gram-positive and Gram-negative bacteria, interacts specifically with LPS and LTA, and limits microbial-induced inflammatory effects. The therapeutic efficiency of PBP10 when immobilized on the surface of iron oxide-based magnetic nanoparticles was not evaluated, to date. RESULTS: Using the human keratinocyte cell line HaCaT stimulated by bacterially-derived LPS and LTA as an in vitro model of bacterial infection, we examined the anti-inflammatory effects of nanosystems consisting of iron oxide-based magnetic nanoparticles with aminosilane (MNP@NH2) or gold shells (MNP@Au) functionalized by a set of peptides, derived from the phosphatidylinositol 4,5-bisphosphate (PIP2)-binding site of the human plasma protein gelsolin, which also binds LPS and LTA. Our results indicate that these nanosystems can kill both Gram-positive and Gram-negative bacteria and limit the production of inflammatory mediators, including nitric oxide (NO), reactive oxygen species (ROS), and interleukin-8 (IL-8) in the response to heat-killed microbes or extracted bacterial cell wall components. The nanoparticles possess the potential to improve therapeutic efficacy and are characterized by lower toxicity and improved hemocompatibility when compared to free peptides. Atomic force microscopy (AFM) showed that these PBP10-based nanosystems prevented changes in nanomechanical properties of cells that were otherwise stimulated by LPS. CONCLUSIONS: Neutralization of endotoxemia-mediated cellular effects by gelsolin-derived peptides and PBP10-containing nanosystems might be considered as potent therapeutic agents in the improved therapy of bacterial infections and microbial-induced inflammation.


Assuntos
Antibacterianos/farmacologia , Gelsolina/química , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Nanopartículas de Magnetita/química , Fragmentos de Peptídeos/química , Antibacterianos/química , Bactérias/efeitos dos fármacos , Sítios de Ligação , Gelsolina/farmacologia , Humanos , Mediadores da Inflamação/metabolismo , Queratinócitos/microbiologia , Lipopolissacarídeos/química , Lipopolissacarídeos/toxicidade , Fragmentos de Peptídeos/farmacologia , Peptídeos/química , Dermatopatias Bacterianas/imunologia , Dermatopatias Bacterianas/microbiologia , Ácidos Teicoicos/química , Ácidos Teicoicos/toxicidade
19.
Oncotarget ; 9(31): 21904-21920, 2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29774111

RESUMO

Natural antimicrobial peptides and ceragenins, as non-peptide amphipathic mimics, have been proposed as anti-cancer agents. To date, it has been confirmed that cathelicidin LL-37 and ceragenin CSA-13, both in free form and immobilized on the surface of magnetic nanoparticles (MNP@LL-37, MNP@CSA-13) induce apoptosis in colon cancer cells. Nevertheless, the question remains whether ceragenins, as synthetic analogs of LL-37 peptide and mimicking a number of its properties, act as antineoplastic agents in breast cancer cells, where LL-37 peptide stimulates oncogenesis. Considering potential anticancer activity, we determined whether CSA-13 and MNP@CSA-13 might be effective against breast cancer cells. Our study provides evidence that both CSA-13 and MNP@CSA-13 decreased viability and inhibit proliferation of MCF-7 and MDA-MB-231 cells despite the protumorigenic properties of LL-37 peptide. Flow cytometry-based analyses revealed that ceragenin treatment results in increases in dead and PI-negative/low-viability cells, which was associated with glutathione (GSH) depletion and increased reactive oxygen species (ROS) generation followed by mitochondrial membrane depolarization, caspase activation, and DNA fragmentation. These findings demonstrate that both CSA-13 and MNP@CSA-13 cause disruption of the oxidative balance of cancer cells. This novel mechanism of ceragenin-mediated eradication of cancer cells suggest that these agents may be developed as a possible treatment of breast cancer.

20.
PLoS One ; 11(6): e0157242, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27315208

RESUMO

Fungal infections, especially those caused by antibiotic resistant pathogens, have become a serious public health problem due to the growing number of immunocompromised patients, including those subjected to anticancer treatment or suffering from HIV infection. In this study we assessed fungicidal activity of the ceragenins CSA-13, CSA-131 and CSA-192 against four fluconazole-resistant Candida strains. We found that ceragenins activity against planktonic Candida cells was higher than activity of human LL-37 peptide and synthetic cationic peptide omiganan. Compared to LL-37 peptide, ceragenins in the presence of DNase I demonstrated an increased ability to kill DNA-induced Candida biofilm. Microscopy studies show that treatment with LL-37 or ceragenins causes Candida cells to undergo extensive surface changes indicating surface membrane damage. This conclusion was substantiated by observation of rapid incorporation of FITC-labeled CSA-13, CSA-131 or LL-37 peptide into the more lipophilic environment of the Candida membrane. In addition to activity against Candida spp., ceragenins CSA-131 and CSA-192 display strong fungicidal activity against sixteen clinical isolates including Cryptococcus neoformans and Aspergillus fumigatus. These results indicate the potential of ceragenins for future development as new fungicidal agents.


Assuntos
Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Esteroides/administração & dosagem , Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/patogenicidade , Biofilmes/crescimento & desenvolvimento , Candida albicans/patogenicidade , Candidíase/microbiologia , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/patogenicidade , Farmacorresistência Fúngica/efeitos dos fármacos , Fluconazol/administração & dosagem , Humanos , Testes de Sensibilidade Microbiana , Catelicidinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...